2021年南昌理工学院《高等数学》专升本考试大纲

发布于 2021-08-09 13:51 ,所属分类:2021专升本考试学习资料


南昌理工学院2021年专升本《高等数学》

考试大纲

一、参考教材

《高等数学》刘晓春,南开大学出版社。

二、考试题型

1.选择题;2.填空题;3.计算题;4.综合题。

三、考试方式、时间及总分

考试方式:闭卷考试;考试时间:150分钟;总分:150分。

四、主要内容

1.函数与极限

函数;数列的极限;函数的极限;无穷小与无穷大;极限运算法则;极限存在准则;两

个重要极限;无穷小的比较;函数的连续性与间断点;闭区间上连续函数的性质。

2.导数与微分

导数的概念及其性质;函数的和、差、积、商的求导法则;复合函数的求导法则;基本

求导法则与导数公式;高阶导数;隐函数及由参数方程所确定的函数的导数;函数的微分。

3.微分中值定理与导数的应用

微分中值定理;洛必达法则;函数的单调性与曲线的凹凸性;函数的极值与最大值、最

小值;函数图形的描绘。

4.不定积分

不定积分的概念与性质;换元积分法;分部积分法。

5.定积分

定积分的概念与性质;微积分基本公式;定积分的换元法及分部积分法。

6.定积分的应用

2

定积分在几何上的应用。

7.微分方程

微分方程的基本概念;可分离变量的微分方程;齐次方程;一阶线性微分方程;可降解

的高阶线性微分方程;二阶常系数齐次线性微分方程。

8.多元函数微分法及其应用

多元函数的基本概念;偏导数;全微分;多元复合函数的求导法则;隐函数的求导公式。

9.重积分

二重积分的概念与性质;二重积分的计算法。

五、基本要求

1.函数与极限

(1)理解函数的概念;熟练掌握函数的四种特性;会求单调函数的反函数;会建立简单

问题的函数关系式。

(2)了解数列极限的定义;熟练掌握数列极限的计算。

(3)了解函数极限的定义;熟练掌握极限的四则运算法则;理解无穷小与无穷大的概念;

掌握无穷小的性质与无穷小的比较;熟练掌握极限的收敛准则;熟练掌握两个重要极限。

(4)了解函数的连续性;了解连续与极限的关系;了解闭区间上连续函数的性质;会求

一般函数的间断点。

2.导数与微分

(1)理解导数的定义与几何意义;了解可导与连续的关系;会求曲线的切线方程和法线

方程。

(2)熟练掌握函数四则运算的求导法则和复合函数的求导法则;熟练掌握求导基本公式;

会求反函数的导数;掌握隐函数的导数、由参数方程所确定的函数的导数。了解高阶导数,

3

熟练掌握二阶导数。

(3)理解微分的概念,了解微分与可导的关系掌握微分的基本公式和运算法则。

3.微分中值定理与导数的应用

(1)理解罗尔定理、拉格朗日中值定理,会验证罗尔定理和拉格朗日中值定理。

(2)熟练掌握罗必达法则。熟练掌握函数的单调性、曲线的凹凸性和拐点,会求函数的

极值和最值。

4.不定积分

(1)理解原函数与不定积分的定义与性质,熟练掌握不定积分的基本公式。

(2)熟练掌握不定积分的换元积分法和分部积分法。

5.定积分及其应用

(1)理解定积分的定义及其性质,掌握定积分的几何意义。

(2)熟练掌握积分变上限函数、牛顿—莱布尼兹公式。

(3)熟练掌握定积分的换元积分法和分部积分法。

6.定积分的应用

(1)了解定积分的元素法,熟练掌握平面图形的面积的计算。

7.微分方程

(1)了解微分方程的概念,熟练掌握可分离变量的微分方程和一阶线性微分方程的解。

(2)熟练掌握二阶常系数线性微分方程解的结构;会求二阶常系数齐次线性微分方程;

8.多元函数微分法及其应用

(1)了解多元函数、多元函数的极限和连续性的概念。

(2)了解多元函数偏导数的概念,熟练掌握多元函数的偏导数和二阶偏导数。

(3)熟练掌握多元函数的全微分,会求多元复合函数和隐函数的偏导数。

4

9.重积分

(1)理解二重积分的定义及其性质。

(2)熟练掌握二重积分在直角坐标系的计算。

六、考试时间及试卷结构

考试方式为闭卷考试,笔试时间为150分钟,试卷满分150.试卷结构如下:

序号项目名称题数分值计分计划用时

一单项选择题10 4 40 40

二填空题5 4 20 15

三计算题6 10 60 54

四综合题2 15 30 41

合计23 150 150



相关资源