人教版数学六年级下册知识要点整理汇总,学习必备!

发布于 2021-03-27 21:59 ,所属分类:知识学习综合资讯


人教版六年级下册知识要点预习

  负数

1、负数的由来:

为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0   1   3.4 5……是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负

2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

个数小于0,则称它是一个负数。负数有无数个,其中有(负整数,负分数和负小数)

负数的写法:数字前面    加负号“-”号,   不可以省略   例如:-2,-5.33,-45,
3、正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数
个数大于0,则称它是一个正数。正数有无数个,其中有(正整数,正分数和正小数)  正数的写法:数字前面可以加正号“+”号,也可以省略不写。例如:+2,5.33,+45

4、  0既不是正数,也不是负数,它是正、负数的分界限

负数都小于0,正数都大于0,负数都比正数小,正数都比负数大

6、比较两数的大小:

①利用数轴:     负数<0<正数    或     左边<右边

②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大


二  百分数(二)

(一)、折扣和成数

1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。

几折就是十分之几,也就是百分之几十。

解决打折的问题,关键是先将打的折数转化为百分数或分数,

然后按照求比个数多(少)百分之几(几分之几)的数的解题方法进行解答

商品现在打八折  :现在的售价是原价的80﹪

商品现在打六折五:现在的售价是原价的65﹪

2、成数:

几成就是十分之几,也就是百分之几十。

解决成数的问题,关键是先将成数转化为百分数或分数,

然后按照求比个数多(少)百分之几(几分之几)的数的解题方法进行解答

这次衣服的进价增加一成      :这次衣服的进价比原来的进价增加10﹪

今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪

(二)、税率和利率

1、税率

(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

(3)应纳税额:缴纳的税款叫做应纳税额。

(4)税率:应纳税额与各种收入的比率叫做税率。

(5)应纳税额的计算方法:  应纳税额=总收入×税率  收入额=应纳税额÷税率

2、利率

(1)存款分为活期、整存整取和零存整取等方法。

(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

(3)本金:存入银行的钱叫做本金。

(4)利息:取款时银行多支付的钱叫做利息。

(5)利率:利息与本金的比值叫做利率。

(6)利息的计算公式:利息=本金×利率×时间    利率=利息÷时间÷本金×100%

(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:

税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

税后利息=本金×利率×时间×(1-利息税率)

购物策略:

估计费用:根据实际的问题,选择合理的估算策略,进行估算。

购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案


三  圆柱和圆锥

一、圆柱

1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。           

圆柱也可以由长方形卷曲而得到。(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。其中,第一种方式得到的圆柱体体积较大。)

2、圆柱的高是两底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

3、圆柱的特征:

(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征  :圆柱有无数条高

4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增 =2πr²  

②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh  

5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,展开图形为正方形

②不沿着高展开,展开图形是平行四边形或不规则图形

 ③无论怎么展开都得不到梯形

6、圆柱的相关计算公式:底面积  :S底=πr²       

 底面周长:C底=πd=2πr            

 侧面积  :S侧=2πrh     

表面积  :S表=2S底+S侧=2πr²+2πrh              

体积    :V柱=πr²h  

考试常见题型:①已知圆柱的底面积和高,  求圆柱的侧面积,表面积,体积,底面周长

 ②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积

 ③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积

 ④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积   

⑤已知圆柱的侧面积和高,  求圆柱的底面半径,表面积,体积,底面积

以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算

无盖水桶的表面积  =侧面积+一个底面积

油桶的表面积      =侧面积+两个底面积

烟囱通风管的表面积=侧面积

只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装

侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池

侧面积+两个底面积:油桶、米桶、罐桶类

二、圆锥

1、圆柱的形成:圆锥是以直角三角形的直角边为轴旋转而得到的

圆锥也可以由扇形卷曲而得到

2、圆锥的高是两顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

3、圆锥的特征:

(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面。

(3)高的特征  :圆锥有一条高。

4、圆柱的切割:①横切:切面是圆

               ②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,

即S增=2rh

5、圆锥的相关计算公式:底面积  :S底=πr²      

                       底面周长:C底=πd=2πr        

       体积    :V锥=/3πr²h

考试常见题型:①已知圆锥的底面积和高,求体积,底面周长

②已知圆锥的底面周长和高,求圆锥的体积,底面积

③已知圆锥的底面周长和体积,求圆锥的高,底面积

以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算

三、圆柱和圆锥的关系

1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

相关资源