高中物理知识点整合:感应电动势的三种特殊情况
发布于 2021-04-11 16:22 ,所属分类:知识学习综合资讯
⑴导体切割磁感线产生的感应电动势E=Blv,应用此公式时B、l、v三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsinθ求解,这也是不可取的。处理这类问题,最好画图找B、l、v三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv求解。此公式也可计算平均感应电动势,只要将v代入平均速度即可。
⑵导体棒以端点为轴在垂直于磁感线的匀强磁场中匀速转动,计算此时产生的感应电动势须注意棒上各点的线速度不同,应用平均速度(即中点位置的线速度)来计算,所以
⑶矩形线圈在匀强磁场中,绕垂直于磁场的任意轴匀速转动产生的感应电动势何时用E=nBsωsinθ计算,何时用E=nBsωcosθ计算,最容易记混。其实这两个公式的区别是计时起点不同,记住两个特殊位置是关键。当线圈转至中性面(即线圈平面与磁场垂直的位置)时E=0,当线圈转至垂直中性面的位置(即线圈平面与磁场平行)时E=nBsω。这样,线圈从中性面开始计时感应电动势按E=nBsωsinθ规律变化,线圈从垂直中性面的位置开始计时感应电动势按E=nBsωcosθ规律变化。并且用这两个公式可以求某时刻线圈的磁通量变化率△φ/△t,不少同学没有这种意识。推导这两个公式时,如果能根据三维空间的立体图准确画出二维空间的平面图,问题就会迎刃而解。另外,
求的是整个闭合回路的平均感应电动势,△t→0的极限值才等于瞬时感应电动势。当△φ均匀变化时,平均感应电动势等于瞬时感应电动势。但三种特殊情况中的公式通常用来求感应电动势的瞬时值。
声明:转载于网络,如有侵权请联系删除,谢谢
相关资源