初一数学重要知识点汇总,快给孩子保存好!

发布于 2021-08-17 15:36 ,所属分类:中考数学学习资料大全

1.数轴


(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数)
(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

2.相反数


(1)相反数的概念:只有符号不同的两个数叫做互为相反数.
(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是-(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.绝对值


1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。
①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.
2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)

4.有理数大小比较


1.有理数的大小比较
比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。2.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。规律方法·有理数大小比较的三种方法:(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.(2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.(3)作差比较:若a﹣b>0,则a>b;若a﹣b<0,则a<b;若a﹣b=0,则a=b.

5.有理数的减法


有理数减法法则减去一个数,等于加上这个数的相反数。即:a﹣b=a+(﹣b) 方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);注意:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律。减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算。

6.有理数的乘法


(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。(2)任何数同零相乘,都得0。
(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0。

(4)方法指引①运用乘法法则,先确定符号,再把绝对值相乘.②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.

7.有理数的混合运算


1.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算。
2.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化。有理数混合运算的四种运算技巧:(1)转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.(2)凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.(3)分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.(4)巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.

8.科学记数法—表示较大的数


1.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)
2.规律方法总结①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n。②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.


9.代数式求值


(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。
(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值。题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.

10.等式的性质


1.等式的性质
性质1 等式两边加同一个数(或式子)结果仍得等式;
性质2 等式两边乘同一个数或除以一个不为零的数,结果仍得等式。
2.利用等式的性质解方程利用等式的性质对方程进行变形,使方程的形式向x=a的形式转化.应用时要注意把握两关:①怎样变形;②依据哪一条,变形时只有做到步步有据,才能保证是正确的.

11.一元一次方程的解


定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。
把方程的解代入原方程,等式左右两边相等。

12.解一元一次方程


1.解一元一次方程的一般步骤去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。使方程逐渐转化为ax=b的最简形式体现化归思想。将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。

相关资源