初二数学上册分式方程性质+解题方法整理

发布于 2021-08-17 20:07 ,所属分类:试题库考试资料大全

开学季~托辅班~晚辅导班!!!

一、分式方程的概念

分母中含有未知数的方程叫分式方程.


要点诠释:

(1)分式方程的重要特征:

①是等式;

②方程里含有分母;

③分母中含有未知数.


(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.


(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.


二、分式方程的解法

解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。因为解分式方程时可能产生增根,所以解分式方程时必须验根。


三、解分式方程的一般步骤:

(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);

(2)解这个整式方程,求出整式方程的解;

(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.

知识点一


分式的基本性质:分式的分子和分母乘(或除以)同一个不等于0的整式,分式的值不变。

典例


变式练习


点评:利用分式的性质进行化简时必须注意所乘的(或所除的)整式不为零。


知识点二


分式方程定义:分母中含未知数的方程叫做分式方程。


整根:使最简公分母为0的根叫做分式方程的整根。


检验分式方程解的方法:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解释原分式方程的解;否则,这个解不是原分式方程的解。


分式方程的解的步骤:(1)去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)

(2)解整式方程,得到整式方程的解。

(3)检验,把所得的整式方程的解代入最简公分母中:

如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。


典例

变式练习


点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:

①让最简公分母为0确定增根;

②化分式方程为整式方程;

③把增根代入整式方程即可求得相关字母的值。


易错点

1、分式值为0时,忽略分母不为0的条件

2、解分式方程,去分母时漏乘整式项导致出错。




福建方程仕教育

~~~暑秋、小中考、初三、高三全日制走读班招生啦~~~
寒春课程~报名热线:189-60852361(姚老师)
课程咨询、心理辅导、初中中考预估分数、新高考3+1+2模式、选科选专业咨询、志愿填报、咨询热线:189-6085-2361(姚老师)

相关资源