第37届全国高中数学联赛加试第2题的复数法解答

发布于 2021-09-13 13:49 ,所属分类:高考数学学习资料大全

预估时间:30min,加上写过程45min吧。几何法难度未知,不过联赛题应该不会难吧。联赛不推荐复数法。


LaTeX代码:

\documentclass[UTF8,fontset=none]{ctexart}

\ctexset{fontset=windows}

\usepackage{amsfonts}

\usepackage{amsmath}

\usepackage{amssymb}

\usepackage{arraycols}

\usepackage{bm}

\usepackage{fancyhdr}

\usepackage{tikz}

\usepackage{verbatim}

\usepackage{yhmath}

\usepackage[left=2.54cm,right=2.54cm,top=1.91cm,bottom=1.91cm,includefoot,includehead]{geometry}

\newCJKfontfamily{\fs}[AutoFakeBold = {3.17}]{FangSong}

\newCJKfontfamily{\st}[AutoFakeBold = {3.17}]{SimSun}

\usetikzlibrary{arrows.meta,positioning}

\everymath{\displaystyle}

\begin{document}

\setlength{\lineskip}{3.2pt}

\setlength{\lineskiplimit}{3.2pt}

\pagestyle{fancy}

\fancyhead[L,C,R]{}

\fancyfoot[L,C]{}

\fancyfoot[R]{\thepage}

\renewcommand{\headrulewidth}{0pt}

\renewcommand{\footrulewidth}{0pt}

\def\per{.}

\def\abs#1{\left|#1\right|}

\def\ov#1{\overline{#1}}

\centerline{\textbf{\st 第37届全国高中数学联赛加试第2题的复数法解答}}

\par$\bm{1}$.如图所示,在$\triangle ABC$中$M$是边$AC$的中点,$DE$是$\triangle ABC$的外接圆在点$A$处的切线上的两点,满足$MD\parallel AB$,且$A$是线段$DE$的中点,过$A$、$B$、$E$三点的圆与边$AC$相交于另一点$P$,过$A$、$D$、$P$三点的圆与$DM$的延长线相交于点$Q$\per 证明:$\angle BCQ=\angle BAC$\per(2021-联赛-13)

$$

\begin{tikzpicture}[scale=0.5]

\def\nd#1#2#3#4#5{node [shift=(#1#2#3:.#4)]{$#5$}}

%print('\n'.join(['\\def\\dian%s{%s}' % (chr(ord(x.split(':')[0]) + 32), x.split(':')[1]) for x in input().split()]))

\def\diana{(6.49097,-0.53241)}

\def\dianb{(0.65005,-6.76069)}

\def\dianc{(7.23453,-6.76069)}

\def\diand{(8.43877,-1.96602)}

\def\diane{(4.54318,0.90120)}

\def\dianm{(6.86275,-3.64655)}

\def\dianp{(7.01345,-4.90884)}

\def\dianq{(5.67897,-4.90884)}

\def\diano{(3.94229,-3.99521)}

\def\dians{(3.05397,-3.16214)}

\def\diant{(6.34621,-2.76909)}

\draw \diane\nd0753E--\diand\nd0153D--\dianq\nd2253Q--\dianc\nd3153C--\diana\nd0603A--\dianb\nd2253B--\dianc;

\draw \dianm\nd1653M;

\draw \dianp\nd3303P;

\draw \diano circle [radius = 4.29962];

\draw \dians circle [radius = 4.32764];

\draw \diant circle [radius = 2.24136];

\end{tikzpicture}

$$

\par\noindent\textbf{证明}\quad 本解答中,点与其所对应复数用同一字母表示,单位圆指圆$\abs Z=1$.

\kaishu

\par 引理1\quad$X$是复平面单位圆上一点\per 则单位圆$X$处的切线上的点$T$满足$$T+X^2\overline{T}=2X\mbox{\per}$$

\par 引理2\quad 复平面上$\triangle UVW$与$\triangle XYZ$顺向相似\per 则$$UY+VZ+WX=UZ+VX+WY\mbox{\per}$$

\par 引理3\quad 复平面上四点$W$、$X$、$Y$、$Z$共圆\per 则$$\frac{\left(W-Y\right)\left(X-Z\right)}{\left(W-Z\right)\left(X-Y\right)}\in\mathbb{R}\mbox{\per}$$

\songti

\par 引理的证明略\per

\par 回到原题\per

\par 以$\triangle ABC$的外接圆圆心为原点,半径为单位长建立复平面\per

\par $M=\frac{A+C}2$\per

\par $\because D$在$\triangle ABC$的外接圆$A$处的切线上\per

\par $\therefore$由{\kaishu 引理1},$D+A^2\ov{D}=2A$\per (*)

\par $\because DM\parallel AB$\per

\par $\therefore\frac{D-M}{A-B}\in\mathbb R$\per

\par $\therefore\frac{\displaystyle D-\frac{A+C}2}{B-A}=\ov{\left(\frac{\displaystyle D-\frac{A+C}2}{B-A}\right)}=\frac{\displaystyle ABC\ov D-\frac{B\left(A+C\right)}2}{C\left(A-B\right)}$\per

\par $\therefore 2C\left(D+AB\ov D\right)=\left(A+C\right)\left(B+C\right)$\per ($**$)

\par 同理,$2C\left(D+AB\ov D\right)=\left(A+C\right)\left(B+C\right)$\per ($*$$*$$*$)

\par 联立($*$)、($**$),解得$D=\frac{A\left(C^2+AC+AB-3BC\right)}{2C\left(A-B\right)}$\per

\par 又$\because A$为$DE$中点\per

\par $\therefore E=2A-D=\frac{A\left(3AC-BC-C^2-AB\right)}{2C\left(A-B\right)}$\per

\par $\because\angle BEA=\angle BPC$,$\angle EAB=\angle ACB=\angle PCB$\per

\par $\therefore\triangle BEA$与$\triangle BPC$顺向相似\per

{\fs\par 这个相似看不出来就自己算共圆去吧,我也没办法\per}

\par $\therefore$由{\kaishu 引理2},$BP+EC+AB=BC+EB+AP$\per

\par 因此

\begin{align*}

P&=\frac{BC+EB-AB-EC}{B-A}=\frac{\displaystyle BC-AB+\frac{A\left(3AC-BC-C^2-AB\right)}{2C\left(A-B\right)}\left(B-C\right)}{B-A}\\

&=\frac{2B^2C^2-2ABC^2-AB^2C-2A^2BC+3A^2C^2-AC^3+A^2B^2}{2C\left(B-A\right)^2}\mbox{\per}

\end{align*}

\par 因此

\begin{align*}

P-D=&\frac{2B^2C^2-2ABC^2-AB^2C-2A^2BC+3A^2C^2-AC^3+A^2B^2}{2C\left(B-A\right)^2}\\

&-\frac{A\left(C^2+AC+AB-3BC\right)}{2C\left(A-B\right)}\\

=&\frac{\left(A-C\right)^2\left(2B^2-AB-AC\right)}{2C\left(B-A\right)^2}\mbox{\per}

\end{align*}

\par $\because Q$、$P$、$A$、$D$共圆\per

\par $\therefore$由{\kaishu 引理3},$\frac{\left(Q-A\right)\left(P-D\right)}{\left(Q-D\right)\left(P-A\right)}\in\mathbb{R}$\per

\par 又$\because QD\parallel AB$,$A$、$P$、$C$共线\per

\par $\therefore\frac{\left(Q-A\right)\left(P-D\right)}{\left(B-A\right)\left(C-A\right)}=\frac{\left(Q-A\right)\left(P-D\right)}{\left(Q-D\right)\left(P-A\right)}\frac{Q-D}{B-A}\frac{P-A}{C-A}\in\mathbb{R}$\per

\par 代入$P-D$,有$\frac{\left(Q-A\right)\left(C-A\right)\left(2B^2-AB-AC\right)}{C\left(B-A\right)^3}=\frac{B\left(A\ov Q-1\right)\left(A-C\right)\left(2AC-BC-B^2\right)}{C\left(A-B\right)^3}$\per

\par 与($*$$*$$*$)联立,解得$Q=\frac{-AB^2+ABC-2AC^2+B^2C+BC^2}{2C\left(B-A\right)}$\per

\par $\therefore Q-C=\frac{-AB^2+ABC-2AC^2+B^2C+BC^2}{2C\left(B-A\right)}-C=\frac{B\left(B-C\right)\left(C-A\right)}{2C\left(B-A\right)}$\per

\par $\therefore\left.\frac{B-C}{Q-C}\middle/\frac{C-A}{B-A}\right.=\frac{2C\left(B-A\right)^2}{B\left(C-A\right)^2}\in\mathbb R$\per

\par $\therefore\angle BCQ=\angle BAC$\per 证毕\per

\end{document}


相关资源