?2021新高一新高考数学必修二第八章立体几何初步8.5空间直线、平面的垂直8.6.2直线与平面垂直
发布于 2021-11-06 22:32 ,所属分类:高考数学学习资料大全
2021新高一新高考数学必修二
第八章 立体几何初步
8.6 空间直线、平面的垂直
8.6.2 直线与平面垂直
8.6.2 直线与平面垂直
学习目标1.了解直线与平面垂直的定义;了解直线与平面所成角的概念.2.掌握直线与平面垂直的判定定理,并会用定理判定线面垂直.3.掌握直线与平面垂直的性质定理,并会用定理证明相关问题.
知识点一 直线与平面垂直的定义
定义 | 如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直 |
记法 | l⊥α |
有关概念 | 直线l叫做平面α的垂线,平面α叫做直线l的垂面,它们唯一的公共点P叫做垂足 |
图示 | |
画法 | 画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直 |
注意:过一点垂直于已知平面的直线有且只有一条,该点与垂足间的线段叫做这个点到该平面的垂线段,垂线段的长度叫做这个点到该平面的距离.
思考 空间两条直线垂直一定相交吗?
答案 不一定相交,空间两条直线垂直分为两种情况:一种是相交垂直,一种是异面垂直.
知识点二 直线与平面垂直的判定定理
文字语言 | 如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直 |
符号语言 | l⊥a,l⊥b,a⊂α,b⊂α,a∩b=P⇒l⊥α |
图形语言 |
思考若把定理中的“两条相交直线”改为“两条直线”,直线与平面一定垂直吗?
答案 当这两条直线平行时,直线可与平面平行或相交或在平面内,但不一定垂直.
知识点三 直线与平面所成的角
有关概念 | 对应图形 | |
斜线 | 一条直线与平面α相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,如图中直线PA | |
斜足 | 斜线和平面的交点,图中点A | |
射影 | 过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面上的射影,图中斜线PA在平面α上的射影为直线AO | |
直线与平面所成的角 | 定义:平面的一条斜线和它在平面上的射影所成的角,图中∠PAO 规定:一条直线垂直于平面,它们所成的角是90°;一条直线和平面平行,或在平面内,它们所成的角是0° | |
取值范围 | 设直线与平面所成的角为θ,0°≤θ≤90° |
知识点四 直线与平面垂直的性质定理
文字语言 | 垂直于同一个平面的两条直线平行 |
符号语言 | ⇒a∥b |
图形语言 |
注意:一条直线与一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线到这个平面的距离,如果两个平面平行,那么其中一个平面内的任意一点到另一个平面的距离都相等,我们把它叫做这两个平行平面间的距离.
思考垂直于同一平面的两条垂线一定共面吗?
答案 共面,由线面垂直的性质定理可知这两条直线是平行的,故能确定一个平面.
1.若直线l与平面α内的无数条直线垂直,则l⊥α.(×)
2.直线与平面所成角为α,则0°<α≤90°.(×)
3.如果一条直线与一个平面垂直,则这条直线垂直于这个平面内的所有直线.(√)
4.如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面.(√)
一、直线与平面垂直的定义以及判定定理的理解
例1下列命题中,正确的序号是________.
①若直线l与平面α内的一条直线垂直,则l⊥α;
②若直线l不垂直于平面α,则α内没有与l垂直的直线;
③若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;
④过一点和已知平面垂直的直线有且只有一条.
答案 ③④
解析 当l与α内的一条直线垂直时,不能保证l与平面α垂直,所以①不正确;当l与α不垂直时,l可能与α内的无数条平行直线垂直,所以②不正确,③正确;过一点有且只有一条直线垂直于已知平面,所以④正确.
反思感悟 对于线面垂直的定义要注意“直线垂直于平面内的所有直线”说法与“直线垂直于平面内无数条直线”不是一回事.
跟踪训练1(1)若三条直线OA,OB,OC两两垂直,则直线OA垂直于()
A.平面OAB B.平面OAC
C.平面OBC D.平面ABC
(2)如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正五边形的两边.能保证该直线与平面垂直的是________.(填序号)
答案 (1)C(2)①③④
解析 (1)∵OA⊥OB,OA⊥OC,OB∩OC=O,OB,OC⊂平面OBC,
∴OA⊥平面OBC.
(2)根据直线与平面垂直的判定定理,平面内这两条直线必须是相交的,①③④中给定的两直线一定相交,能保证直线与平面垂直,而②梯形的两边可能是上、下底边,它们互相平行,不满足定理条件.
二、直线与平面垂直的判定
例2如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.
(1)求证:SD⊥平面ABC;
(2)若AB=BC,求证:BD⊥平面SAC.
证明 (1)因为SA=SC,D是AC的中点,
所以SD⊥AC.在Rt△ABC中,AD=BD,
由已知SA=SB,
所以△ADS≌△BDS,
所以SD⊥BD.又AC∩BD=D,AC,BD⊂平面ABC,
所以SD⊥平面ABC.
(2)因为AB=BC,D为AC的中点,
所以BD⊥AC.由(1)知SD⊥BD.
又因为SD∩AC=D,SD,AC⊂平面SAC,所以BD⊥平面SAC.
反思感悟 利用线面垂直的判定定理证明线面垂直的步骤
(1)在这个平面内找两条直线,使它们和这条直线垂直.
(2)确定这个平面内的两条直线是相交的直线.
(3)根据判定定理得出结论.
跟踪训练2如图,AB为⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.
(1)求证:AN⊥平面PBM;
(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.
证明 (1)∵AB为⊙O的直径,∴AM⊥BM.
又PA⊥平面ABM,BM⊂平面ABM,
∴PA⊥BM.
又∵PA∩AM=A,PA,AM⊂平面PAM,
∴BM⊥平面PAM.
又AN⊂平面PAM,∴BM⊥AN.
又AN⊥PM,且BM∩PM=M,BM,PM⊂平面PBM,
∴AN⊥平面PBM.
(2)由(1)知AN⊥平面PBM,
PB⊂平面PBM,∴AN⊥PB.
又∵AQ⊥PB,AN∩AQ=A,AN,AQ⊂平面ANQ,
∴PB⊥平面ANQ.
又NQ⊂平面ANQ,∴PB⊥NQ.
三、直线与平面垂直的性质
例3 如图,在四棱锥P-ABCD中,底面ABCD是矩形,AB⊥平面PAD,AD=AP,E是PD的中点,M,N分别在AB,PC上,且MN⊥AB,MN⊥PC.证明:AE∥MN.
证明 ∵AB⊥平面PAD,AE⊂平面PAD,∴AE⊥AB,
又AB∥CD,∴AE⊥CD.
∵AD=AP,E是PD的中点,∴AE⊥PD.
又CD∩PD=D,CD,PD⊂平面PCD,
∴AE⊥平面PCD.
∵MN⊥AB,AB∥CD,∴MN⊥CD.
又∵MN⊥PC,PC∩CD=C,PC,CD⊂平面PCD,
∴MN⊥平面PCD,∴AE∥MN.
反思感悟 证明线线平行的常用方法
(1)利用线线平行定义:证共面且无公共点.
(2)利用基本事实4:证两线同时平行于第三条直线.
(3)利用线面平行的性质定理:把证线线平行转化为证线面平行.
(4)利用线面垂直的性质定理:把证线线平行转化为证线面垂直.
(5)利用面面平行的性质定理:把证线线平行转化为证面面平行.
跟踪训练3如图,α∩β=l,PA⊥α,PB⊥β,垂足分别为A,B,a⊂α,a⊥AB.求证:a∥l.
证明 ∵PA⊥α,l⊂α,∴PA⊥l.同理PB⊥l.
∵PA∩PB=P,PA,PB⊂平面PAB,∴l⊥平面PAB.
又∵PA⊥α,a⊂α,∴PA⊥a.
∵a⊥AB,PA∩AB=A,PA,AB⊂平面PAB,
∴a⊥平面PAB.
∴a∥l.
求直线与平面所成的角
典例 如图,在正方体ABCD-A1B1C1D1中,
(1)求A1B与平面AA1D1D所成的角;
(2)求A1B与平面BB1D1D所成的角.
解 (1)∵AB⊥平面AA1D1D,
∴∠AA1B就是A1B与平面AA1D1D所成的角,
在Rt△AA1B中,∠BAA1=90°,AB=AA1,
∴∠AA1B=45°,
∴A1B与平面AA1D1D所成的角是45°.
(2)连接A1C1交B1D1于点O,连接BO.
∵A1O⊥B1D1,BB1⊥A1O,BB1∩B1D1=B1,BB1,B1D1⊂平面BB1D1D,
∴A1O⊥平面BB1D1D,
∴∠A1BO就是A1B与平面BB1D1D所成的角.
设正方体的棱长为1,则A1B=,A1O=.
又∵∠A1OB=90°,
∴sin∠A1BO==,又0°≤∠A1BO≤90°,
∴∠A1BO=30°,
∴A1B与平面BB1D1D所成的角是30°.
[素养提升]求直线与平面所成角的步骤
(1)寻找过斜线上一点与平面垂直的直线.
(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角.
(3)把该角归结在某个三角形中,通过解三角形,求出该角.
1.在正方体ABCD-A1B1C1D1的六个面中,与AA1垂直的平面的个数是()
A.1 B.2C.3 D.6
答案 B
2.给出下列三个命题:
①一条直线垂直于一个平面内的三条直线,则这条直线和这个平面垂直;
②一条直线与一个平面内的任何直线所成的角相等,则这条直线和这个平面垂直;
③一条直线在平面内的射影是一点,则这条直线和这个平面垂直.
其中正确的个数是()
A.0 B.1C.2 D.3
答案 C
解析 ①错,②③对.
3.(多选)在空间中,下列哪些命题是正确的()
A.平行于同一条直线的两条直线互相平行
B.垂直于同一条直线的两条直线互相平行
C.平行于同一个平面的两条直线互相平行
D.垂直于同一个平面的两条直线互相平行
答案 AD
4.下列命题正确的是()
①⇒b⊥α; ②⇒b∥α;③⇒b⊥α.
A.①② B.①③C.②③ D.①
答案 D
5.如图,在正方体ABCD-A1B1C1D1中,与AD1垂直的平面是()
A.平面DD1C1C
B.平面A1DB1
C.平面A1B1C1D1
D.平面A1DB
答案 B
解析 ∵AD1⊥A1D,AD1⊥A1B1,A1D∩A1B1=A1,A1D,A1B1⊂平面A1DB1,
∴AD1⊥平面A1DB1.
1.知识清单:
(1)直线与平面垂直的定义.
(2)直线与平面垂直的判定定理.
(3)直线与平面垂直的性质定理.
2.方法归纳:转化思想.
3.常见误区:判定定理理解“平面内找两条相交直线”与该直线垂直.
1.空间中直线l和三角形的一边AC及另一边BC的中线同时垂直,则这条直线和三角形的第三边AB的位置关系是()
A.平行 B.垂直
C.相交 D.不确定
答案 B
解析 由于直线l和三角形的一边AC及另一边BC的中线同时垂直,所以直线l和三角形所在的平面垂直,又因三角形的第三边AB在这个平面内,所以l⊥AB.
2.给出下列条件(其中l为直线,α为平面):
①l垂直于α内三条不都平行的直线;
②l垂直于α内无数条直线;
③l垂直于α内正六边形的三条边.
其中能得出l⊥α的所有条件序号是()
A.② B.①C.①③ D.③
答案 C
3.下列说法中,正确的有()
①如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直;
②过直线l外一点P,有且仅有一个平面与l垂直;
③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面;
④过点A垂直于直线a的所有直线都在过点A垂直于a的平面内.
A.1个B.2个 C.3个 D.4个
答案 C
解析 ①不正确,其他三项均正确.
4.如图所示,如果MC⊥平面ABCD,四边形ABCD是菱形,那么MA与BD的位置关系是()
A.平行 B.垂直相交
C.垂直但不相交 D.相交但不垂直
答案 C
解析 连接AC.因为四边形ABCD是菱形,所以BD⊥AC.又MC⊥平面ABCD,则BD⊥MC.因为AC∩MC=C,AC,MC⊂平面AMC,所以BD⊥平面AMC.又MA⊂平面AMC,所以MA⊥BD.显然直线MA与直线BD不共面,因此直线MA与BD的位置关系是垂直但不相交.
5.如图,α∩β=l,点A,C∈α,点B∈β,且BA⊥α,BC⊥β,那么直线l与直线AC的关系是()
A.异面 B.平行
C.垂直 D.不确定
答案 C
解析 ∵AB⊥α,l⊂α,∴AB⊥l,
又∵BC⊥β,l⊂β,∴BC⊥l,
又AB∩BC=B,AB,BC⊂平面ABC,
∴l⊥平面ABC,
又AC⊂平面ABC,∴l⊥AC.
6.已知直线l,a,b,平面α,若要得到结论l⊥α,则需要在条件a⊂α,b⊂α,l⊥a,l⊥b中另外添加的一个条件是________.
答案 a与b相交
7.a,b是异面直线,直线l⊥a,l⊥b,直线m⊥a,m⊥b,则l与m的位置关系是________.
答案 平行
解析 由线面垂直的性质定理可得.
8.如图所示,三棱锥P-ABC中,PA⊥平面ABC,PA=AB,则直线PB与平面ABC所成角的度数为________.
答案 45°
解析 因为PA⊥平面ABC,所以斜线PB在平面ABC上的射影为AB,所以∠PBA即为直线PB与平面ABC所成的角.在△PAB中,∠BAP=90°,PA=AB,所以∠PBA=45°,即直线PB与平面ABC所成的角等于45°
9.如图所示,在四棱锥P-ABCD中,底面ABCD是矩形.已知AD=2,PA=2,PD=2,求证:AD⊥平面PAB.
证明 在△PAD中,由PA=2,AD=2,PD=2,
可得PA2+AD2=PD2,即AD⊥PA.
又AD⊥AB,PA∩AB=A,PA,AB⊂平面PAB,
所以AD⊥平面PAB.
10.如图,正方体A1B1C1D1-ABCD中,EF与异面直线AC,A1D都垂直相交.求证:EF∥BD1.
证明 如图所示,连接AB1,B1D1,B1C,BD,
∵DD1⊥平面ABCD,AC⊂平面ABCD,∴DD1⊥AC.
又AC⊥BD,DD1∩BD=D,DD1,BD⊂平面BDD1B1,
∴AC⊥平面BDD1B1,
又BD1⊂平面BDD1B1,∴AC⊥BD1.
同理可证BD1⊥B1C,
又AC∩B1C=C,AC,B1C⊂平面AB1C,
∴BD1⊥平面AB1C.
∵EF⊥A1D,A1D∥B1C,∴EF⊥B1C.
又∵EF⊥AC,AC∩B1C=C,AC,B1C⊂平面AB1C,
∴EF⊥平面AB1C,∴EF∥BD1.
11.如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么,在这个空间图形中必有()
A.AG⊥△EFH所在平面
B.AH⊥△EFH所在平面
C.HF⊥△AEF所在平面
D.HG⊥△AEF所在平面
答案 B
解析 根据折叠前、后AH⊥HE,AH⊥HF不变,可推出AH⊥平面EFH.
12.如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,PA=AB,D为PB的中点,则下列结论正确的有()
①BC⊥平面PAB;
②AD⊥PC;
③AD⊥平面PBC;
④PB⊥平面ADC.
A.1个B.2个 C.3个 D.4个
答案 C
解析 ∵PA⊥平面ABC,∴PA⊥BC,
又BC⊥AB,PA∩AB=A,PA,AB⊂平面PAB,
∴BC⊥平面PAB,故①正确;
由BC⊥平面PAB,得BC⊥AD,
又PA=AB,D是PB的中点,
∴AD⊥PB,又PB∩BC=B,PB,BC⊂平面PBC,
∴AD⊥平面PBC,∴AD⊥PC,故②③正确.
13.如图所示,在正三棱柱ABC-A1B1C1中,若AB∶BB1=∶1,则AB1与平面BB1C1C所成角的大小为()
A.45° B.60°
C.30° D.75°
答案 A
解析 取BC的中点D,连接AD,B1D,
∵AD⊥BC且AD⊥BB1,BC∩BB1=B,BC,BB1⊂平面BCC1B1,
∴AD⊥平面BCC1B1,
∴∠AB1D即为AB1与平面BB1C1C所成的角.
设AB=,则AA1=1,AD=,AB1=,
∴sin∠AB1D==,∴∠AB1D=45°.
14.如图,在直三棱柱ABC-A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况)
答案 ∠A1C1B1=90°
解析 如图所示,连接B1C,由BC=CC1,可得BC1⊥B1C,因此,要证AB1⊥BC1,则只要证明BC1⊥平面AB1C,即只要证AC⊥BC1即可,由直三棱柱可知,只要证AC⊥BC即可.因为A1C1∥AC,B1C1∥BC,故只要证A1C1⊥B1C1即可.(或者能推出A1C1⊥B1C1的条件,如∠A1C1B1=90°等)
15.(多选)如图所示,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中正确的是()
A.AC⊥SB
B.AB∥平面SCD
C.SA与平面SBD所成的角等于SC与平面SBD所成的角
D.AB与SC所成的角等于DC与SA所成的角
答案 ABC
解析 对于选项A,由题意得SD⊥AC,AC⊥BD,SD∩BD=D,SD,BD⊂平面SBD,∴AC⊥平面SBD,故AC⊥SB,故A正确;对于选项B,∵AB∥CD,AB⊄平面SCD,CD⊂平面SCD,∴AB∥平面SCD,故B正确;对于选项C,由对称性知SA与平面SBD所成的角与SC与平面SBD所成的角相等,故C正确.
16.如图,PA⊥矩形ABCD所在的平面,M,N分别是AB,PC的中点.
(1)求证:MN∥平面PAD;
(2)若PD与平面ABCD所成的角为45°,求证:MN⊥平面PCD.
证明 (1)取PD的中点E,连接NE,AE,如图.
又∵N是PC的中点,∴NE∥DC且NE=DC.
又∵DC∥AB且DC=AB,
AM=AB,
∴AM∥CD且AM=CD,∴NE∥AM,且NE=AM,
∴四边形AMNE是平行四边形,∴MN∥AE.
∵AE⊂平面PAD,MN⊄平面PAD,
∴MN∥平面PAD.
(2)∵PA⊥平面ABCD,
∴∠PDA即为PD与平面ABCD所成的角,
∴∠PDA=45°,∴AP=AD,∴AE⊥PD.
又∵MN∥AE,∴MN⊥PD.
∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD.
又∵CD⊥AD,PA∩AD=A,PA,AD⊂平面PAD,
∴CD⊥平面PAD.
∵AE⊂平面PAD,∴CD⊥AE,
∴CD⊥MN.又CD∩PD=D,CD,PD⊂平面PCD,
∴MN⊥平面PCD.
.
去年发了一年的资料就不再同步更新链接了,公号历史记录里都能看,QQ群里也都能下载,不想回翻历史记录也没关系,年年有新题,年年有新卷,接下来会同步更新新版内容的。下面的链接是历史推送里的经典资料,和一些值得一看的内容,以及同步更新的。
在gongzhong号对话页面菜单栏里找到这些内容:
下面的专题可以直接点击:
【真题专区】2011-2021高考真题240套(解析全)
【新高一】新高一数学课件PPT及解析(更新中)
【新高二】新高二数学课件PPT及解析(更新中)
【2022高三】2022高三一轮二轮(更新中)
【专题二区】数不清的数学专题(同步更新中)
【试卷三区】高考真题、笔者所在地最新模卷
相关资源