2021年全国高考甲卷数学(文)试题(解析版)

发布于 2021-09-03 21:35 ,所属分类:试题库考试资料大全

绝密启用前

2021年普通高等学校招生全国统一考试

文科数学

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.

2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑.如需改动,用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.

3.考试结束后,将本试卷和答题卡一并交回.

一、选择题:本题共12小题,每小题5分,共60.在每小题给出的四个选项中,只有一项是符合题目要求的.

1. 设集合,则

A. B. C. D.

【答案】B

【分析】求出集合后可求.

2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:


根据此频率分布直方图,下面结论中不正确的是(

A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%

B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%

C. 估计该地农户家庭年收入的平均值不超过6.5万元

D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间

【答案】C


【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.

【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于.

3. 已知,则

A. B. C. D.

【答案】B


【分析】由已知得,根据复数除法运算法则,即可求解.

4. 下列函数中是增函数的为(

A.


B. C. D.


【答案】D


【分析】根据基本初等函数的性质逐项判断后可得正确的选项.

5. 到双曲线的一条渐近线的距离为(

A. B. C. D.

【答案】A


【分析】首先确定渐近线方程,然后利用点到直线距离公式求得点到一条渐近线的距离即可.

6. 青少年视力是社会普遍的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )(

A. 1.5 B. 1.2 C. 0.8 D. 0.6

【答案】C


【分析】根据关系,当时,求出,再用指数表示,即可求解.

7. 在一个正方体中,过顶点A的三条棱的中点分别为EFG.该正方体截去三棱锥后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是(

A. B. C. D.

【答案】D


【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断.

8. 中,已知,则

A. 1 B. C. D. 3

【答案】D


【分析】利用余弦定理得到关于BC长度的方程,解方程即可求得边长.

【点睛】利用余弦定理及其推论解三角形的类型:

(1)已知三角形的三条边求三个角;

(2)已知三角形的两边及其夹角求第三边及两角;

(3)已知三角形的两边与其中一边的对角,解三角形.

9. 为等比数列的前n项和.,则

A. 7 B. 8 C. 9 D. 10

【答案】A


【分析】根据题目条件可得成等比数列,从而求出,进一步求出答案.

10. 3120随机排成一行,则20不相邻的概率为(

A. 0.3 B. 0.5 C. 0.6 D. 0.8

【答案】C


【分析】利用古典概型的概率公式可求概率.

11. ,则

A. B. C. D.

【答案】A


【分析】由二倍角公式可得,再结合已知可求得,利用同角三角函数的基本关系即可求解.

【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出


.


12. 是定义域为R的奇函数,且.,则

A. B. C. D.

【答案】C


【分析】由题意利用函数的奇偶性和函数的递推关系即可求得的值.

【点睛】关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.

二、填空题:本题共4小题,每小题5分,共20.

13. 若向量满足,则_________.

【答案】


【分析】根据题目条件,利用模的平方可以得出答案

14. 已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为________.

【答案】


【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.

15. 已知函数的部分图像如图所示,则_______________.

【答案】


【分析】首先确定函数的解析式,然后求解的值即可.

【点睛】已知f(x)Acos(ωxφ)(A0ω0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ωφ,常用如下两种方法:

(1)ω即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)零点横坐标x0,则令ωx0φ0(ωx0φπ),即可求出φ.

(2)代入点的坐标,利用一些已知点(最高点、最低点或零点”)坐标代入解析式,再结合图形解出ωφ,若对Aω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.

16. 已知为椭圆C的两个焦点,PQC上关于坐标原点对称的两点,且,则四边形的面积为________

【答案】


【分析】根据已知可得,设,利用勾股定理结合,求出,四边形面积等于,即可求解.

三、解答题:共70.解答应写出交字说明、证明过程程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.2223题为选考题,考生根据要求作答.

()必考题:共60.

17. 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:


一级品

二级品

合计

甲机床

150

50

200

乙机床

120

80

200

合计

270

130

400

1)甲机床、乙机床生产的产品中一级品的频率分别是多少?

2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?

附:


0.050

0.010

0.001

k

3.841

6.635

10.828


【答案】175%60%

2)能.


【分析】根据给出公式计算即可

18. 为数列的前n项和,已知,且数列是等差数列,证明:是等差数列.

【答案】证明见解析.


【分析】先根据求出数列的公差,进一步写出的通项,从而求出的通项公式,最终得证.

【点睛】在利用求通项公式时一定要讨论的特殊情况.

19. 已知直三棱柱中,侧面为正方形,EF分别为的中点,.

1)求三棱锥的体积;

2)已知D为棱上的点,证明:.

【答案】(1)(2)证明见解析.


【分析】(1)首先求得AC的长度,然后利用体积公式可得三棱锥的体积;

(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论.

(2)(1)结论可将几何体补形为一个棱长为2的正方体,如图所示,取棱的中点,连结

正方形中,为中点,则

平面,而平面

从而.

【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.

20. 设函数,其中.

1)讨论的单调性;

2)若的图象与轴没有公共点,求a的取值范围.

【答案】1的减区间为,增区间为;(2.


【分析】1)求出函数的导数,讨论其符号后可得函数的单调性.

2)根据及(1)的单调性性可得,从而可求a的取值范围.

【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化.

21. 抛物线C的顶点为坐标原点O.焦点在x轴上,直线lCPQ两点,且.已知点,且l相切.

1)求C的方程;

2)设C上的三个点,直线均与相切.判断直线的位置关系,并说明理由.

【答案】(1)抛物线方程为;(2)相切,理由见解析


【分析】(1)根据已知抛物线与相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出坐标,由,即可求出;由圆与直线相切,求出半径,即可得出结论;

(2)先考虑斜率不存在,根据对称性,即可得出结论;若斜率存在,由三点在抛物线上,将直线斜率分别用纵坐标表示,再由与圆相切,得出的关系,最后求出点到直线的距离,即可得出结论.

【点睛】关键点点睛:(1)过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;(2)要充分利用的对称性,抽象出关系,把的关系转化为用表示.

()选考题:共10.请考生在第2223题中任选一题作答.如果多做,则按所做的第一题计分.

[选修4-4:坐标系与参数方程]

22. 在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为

1)将C的极坐标方程化为直角坐标方程;

2)设点A的直角坐标为MC上的动点,点P满足,写出Р的轨迹的参数方程,并判断C是否有公共点.

【答案】1;(2P的轨迹的参数方程为为参数),C没有公共点.


【分析】1)将曲线C的极坐标方程化为,将代入可得;

2)设,设,根据向量关系即可求得P的轨迹的参数方程,求出两圆圆心距,和半径之差比较可得.

【点睛】关键点睛:本题考查参数方程的求解,解题的关键是设出的参数坐标,利用向量关系求解.

[选修4-5:不等式选讲]

23. 已知函数

1)画出的图像;

2)若,求a的取值范围.

【答案】1)图像见解析;(2


【分析】1)分段去绝对值即可画出图像;

2)根据函数图像数形结和可得需将向左平移可满足同角,求得的值可求.

【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解.




完整版试题和答案详细解析私信教育科学站gongzhong号“2021年高中真题”获取。

相关资源