六年级数学中所有图形与几何的知识合集+练习题(有答案),替孩子收藏起来!

发布于 2021-03-27 06:45 ,所属分类:知识学习综合资讯

(一)图形的认识、测量

量的计量

一、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。


 二、长度单位:

1千米=1000米

1米=10分米

1分米=10厘米

1厘米=10毫米

1米=100厘米

1米=1000毫米


三、面积单位是用来测量物体的表面或平面图形的大小的。常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。


四、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。


五、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。


、面积单位:(100)

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米


七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。


八、体积单位:(1000)

1立方米=1000立方分米

1立方分米=1000立方厘米

1升=1000毫升



平面图形【认识、周长、面积】


一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。


二、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是(°)。


三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。


四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。


五、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。


六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。

按边分,可以分为等边三角形、等腰三角形和任意三角形。


七、三角形的内角和等于180度。


八、在一个三角形中,任意两边之和大于第三边。


九、在一个三角形中,最多只有一个直角或最多只有一个钝角。


十、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。


十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。


十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。


十三、围成一个图形的所有边长的总和就是这个图形的周长。


十四、物体的表面或围成的平面图形的大小,叫做它们的面积。


十五、平面图形的面积计算公式推导:

【1】平行四边形面积公式的推导过程

①把平行四边形通过剪切、平移可以转化成一个长方形。

②长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。

③因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。


【2】三角形面积公式的推导过程

①用两个完全一样的三角形可以拼成一个平行四边形。

②平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半

③因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。即:S=ah÷2。


【3】梯形面积公式的推导过程

①用两个完全一样的梯形可以拼成一个平行四边形

②平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半

③因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。即:S=(a+b)h÷2。


【4】画图说明圆面积公式的推导过程

①把圆分成若干等份,剪开后,拼成了一个近似的长方形。

②长方形的长相当于圆周长的一半,宽相当于圆的半径。

③因为:长方形面积=长×宽,所以:圆面积=πr×r=πr²。即:S=πr²


十六、平面图形的周长和面积计算公式:

长方形周长 =(长+宽)× 2

长方形面积 = 长 × 宽

正方形周长 = 边长 × 4

正方形面积 = 边长 × 边长

平行四边形面积 = 底 × 高

三角形面积 = 底 × 高 ÷ 2


立体图形【认识、周长、面积】


一、长方体、正方体都有6个面,12条棱,8个顶点。正方体是特殊的长方体。


二、圆柱的特征:一个侧面、两个底面、无数条高。


三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。


四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。


五、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的容积。


六、圆柱和圆锥三种关系:

 ①等底等高:体积1︰3  

 ②等底等体积:高1︰3  

 ③等高等体积:底面积1︰3


七、等底等高的圆柱和圆锥:

①圆锥体积是圆柱的1/3,       

②圆柱体积是圆锥的3倍,

③圆锥体积比圆柱少2/3,       

④圆柱体积比圆锥多2倍。


八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。


九、立体图形公式推导:

【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)

①圆柱的侧面展开后一般得到一个长方形。   

②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。

④圆柱的侧面展开后还可能得到一个正方形。

正方形的边长=圆柱的底面周长=圆柱的高。


【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?

相关资源