2022年高考数学高三大一轮复习第十章计数原理、概率、随机变量及其分布10.2排列、组合
发布于 2021-11-30 10:43 ,所属分类:高考数学学习资料大全
2022年高考数学高三大一轮复习
第十章 计数原理、概率、随机变量及其分布
§10.2 排列、组合
§10.2 排列、组合
考试要求1.理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.2.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.
1.排列与组合的概念
名称 | 定义 | 区别 | |
排列 | 从n个不同元素中取出m(m≤n)个元素 | 按照一定的顺序排成一列 | 排列有序,组合无序 |
组合 | 合成一组 |
2.排列数与组合数
定义 | 计算公式 | 性质 | 联系 | |
排列数 | 从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数.用符号“A”表示 | A=n(n-1)(n-2)…(n-m+1)=(n,m∈N*,且m≤n) | (1)A=n!; (2)0!=1 | C= |
组合数 | 从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号“C”表示 | C==(n,m∈N*,且m≤n) | (1)C=C=1; (2)C=C; (3)C=C+C |
微思考
1.排列问题和组合问题的区别是什么?
提示 元素之间与顺序有关的为排列,与顺序无关的为组合.
2.排列数与组合数公式之间有何关系?它们的公式都有两种形式,如何选择使用?
提示(1)排列数与组合数之间的联系为CA=A.
(2)两种形式分别为:①连乘积形式;②阶乘形式.
前者多用于数字计算,后者多用于含有字母的排列数式子的变形与论证.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)所有元素完全相同的两个排列为相同排列.(×)
(2)两个组合相同的充要条件是其中的元素完全相同.(√)
(3)若组合式C=C,则x=m成立.(×)
(4)排列定义规定给出的n个元素各不相同,并且只研究被取出的元素也各不相同的情况.也就是说,如果某个元素已被取出,则这个元素就不再取了.(√)
题组二 教材改编
2.从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是()
A.12B.24 C.64 D.81
答案B
解析 4本不同的课外读物选3本分给3位同学,每人一本,则不同的分配方法种数为A=24.
3.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()
A.144B.120 C.72 D.24
答案 D
解析 “插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A=4×3×2=24.
4.C+C+C+C的值为________.(用数字作答)
答案 210
解析 原式=C+C+C=C+C=C=C=210.
题组三 易错自纠
5.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()
A.192种 B.216种 C.240种D.288种
答案 B
解析 第一类:甲在最左端,有A=5×4×3×2×1=120(种)排法;第二类:乙在最左端,甲不在最右端,
有4A=4×4×3×2×1=96(种)排法.
所以共有120+96=216(种)排法.
6.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法种数为________.
答案 30
解析 分两种情况:(1)A类选修课选1门,B类选修课选2门,有CC种不同的选法;(2)A类选修课选2门,B类选修课选1门,有CC种不同的选法.
所以不同的选法共有CC+CC=18+12=30(种).
题型一排列问题
1.用1,2,3,4,5这五个数字,可以组成比20 000大,并且百位数不是数字3的没有重复数字的五位数,共有()
A.96个 B.78个C.72个D.64个
答案 B
解析 根据题意知,要求这个五位数比20 000大,则万位数必须是2,3,4,5这4个数字中的一个,当万位数是3时,百位数不是数字3,符合要求的五位数有A=24(个);当万位数是2,4,5时,由于百位数不能是数字3,则符合要求的五位数有3×(A-A)=54(个),因此共有54+24=78(个)这样的五位数符合要求.
2.(2020·惠州调研)七人并排站成一行,如果甲、乙两人必须不相邻,那么不同的排法种数是()
A.3 600 B.1440 C.4820 D.4800
答案 A
解析 除甲、乙外,其余5个人排列为A种排法,再用甲乙去插6个空位有A种,不同的排法种数是AA=3 600(种).
3.受新冠肺炎疫情影响,某学校按上级文件指示,要求错峰放学,错峰有序吃饭.高三年级一层楼六个班排队,甲班必须排在前三位,且丙班、丁班必须排在一起,则这六个班排队吃饭的不同安排方案共有()
A.240种 B.120种C.188种D.156种
答案B
解析 根据题意,按甲班位置分3种情况讨论:
(1)甲班排在第一位,丙班和丁班排在一起的情况有4A=8(种),将剩余的三个班全排列,安排到剩下的3个位置,有A=6(种)情况,此时有8×6=48(种)安排方案;
(2)甲班排在第二位,丙班和丁班在一起的情况有3A=6(种),将剩下的三个班全排列,安排到剩下的三个位置,有A=6(种)情况,此时有6×6=36(种)安排方案;
(3)甲班排在第三位,丙班和丁班排在一起的情况有3A=6(种),将剩下的三个班全排列,安排到剩下的三个位置,有A=6(种)情况,此时有6×6=36(种)安排方案.
由分类加法计数原理可知共有48+36+36=120(种)方案.
思维升华 (1)对于有限制条件的排列问题,分析问题时有位置分析法和元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.
(2)常见排列数的求法为:①相邻问题采用“捆绑法”.②不相邻问题采用“插空法”.③有限制元素采用“优先法”.④特殊顺序问题,先让所有元素全排列,然后除以有限制元素的全排列数.
题型二组合问题
1.(2020·新高考全国Ⅰ)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()
A.120种 B.90种C.60种D.30种
答案 C
解析 先从6名同学中选1名安排到甲场馆,有C种选法,再从剩余的5名同学中选2名安排到乙场馆,有C种选法,最后将剩下的3名同学安排到丙场馆,有C种选法,由分步乘法计数原理知,共有C·C·C=60(种)不同的安排方法.
2.为了应对美欧等国的经济制裁,俄罗斯天然气公司决定从10名办公室工作人员中裁去4人,要求甲、乙二人不能全部裁去,则不同的裁员方案的种数为________.
答案 182
解析 甲、乙中裁一人的方案有CC种,甲、乙都不裁的方案有C种,故不同的裁员方案共有CC+C=182(种).
3.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有______种.(用数字填写答案)
答案 16
解析 方法一按参加的女生人数可分两类:只有1位女生参加有CC种,有2位女生参加有CC种.故所求选法共有CC+CC=2×6+4=16(种).
方法二 间接法:从2位女生,4位男生中选3人,共有C种情况,没有女生参加的情况有C种,故所求选法共有C-C=20-4=16(种).
思维升华 (1)解排列、组合问题要遵循的两个原则
①按元素(位置)的性质进行分类.
②按事情发生的过程进行分步.
具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).
(2)两类含有附加条件的组合问题的方法
①“含有”或“不含有”某些元素的组合题型:若“含”,则先将这些元素取出,再由另外元素补足;若“不含”,则先将这些元素剔除,再从剩下的元素中选取.
②“至少”或“最多”含有几个元素的组合题型:解这类题目必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解,用直接法分类复杂时,可用间接法求解.
题型三排列与组合的综合问题
命题点1 相邻问题
例1北京APEC峰会期间,有2位女性和3位男性共5位领导人站成一排照相,则女性领导人甲不在两端,3位男性领导人中有且只有2位相邻的站法有()
A.12种 B.24种C.48种D.96种
答案 C
解析 从3位男性领导人中任取2人“捆”在一起记作A,A共有CA=6(种)不同排法,剩下1位男性领导人记作B,2位女性分别记作甲、乙;则女领导人甲必须在A,B之间,此时共有6×2=12(种)排法(A左B右和A右B左),最后再在排好的三个元素中选出四个位置插入乙,∴共有12×4=48(种)不同排法.
命题点2 相间问题
例2某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()
A.72B.120 C.144 D.168
答案 B
解析 安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有ACA=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有AA=48(种)安排方法,故共有36+36+48=120(种)安排方法.
命题点3 特殊元素(位置)问题
例3大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在.某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有()
A.18种 B.24种C.36种D.48种
答案 B
解析 根据题意,分两种情况讨论:
①A家庭的孪生姐妹在甲车上,甲车上另外的两个孩子要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个孩子中任选一个来乘坐甲车,
有C×C×C=12(种)乘坐方式;
②A家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个孩子都在甲车上,对于剩余的两个家庭,从每个家庭的2个孩子中任选一个来乘坐甲车,有C×C×C=12(种)乘坐方式.
故共有12+12=24(种)乘坐方式,故选B.
思维升华解排列、组合问题要遵循的两个原则
(1)按元素(位置)的性质进行分类.
(2)按事情发生的过程进行分步.
具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).
跟踪训练 (1)把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.
答案 36
解析 将产品A与B捆绑在一起,然后与其他三种产品进行全排列,共有AA种方法,将产品A,B,C捆绑在一起,且A在中间,然后与其他两种产品进行全排列,共有AA种方法.于是符合题意的摆法共有AA-AA=36(种).
(2)数学活动小组由12名同学组成,现将这12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题,并要求每组选出1名组长,则不同的分配方案有()
A.A种 B.CCC34种
C.43种 D.CCC43种
答案 B
解析 方法一 首先将12名同学平均分成四组,有种分法,然后将这四组同学分配到四个不同的课题组,有A种分法,并在各组中选出1名组长,有34种选法,根据分步乘法计数原理,满足条件的不同分配方案有·A·34=CCC34(种),故选B.
方法二 根据题意可知,第一组分3名同学有C种分法,第二组分3名同学有C种分法,第三组分3名同学有C种分法,第四组分3名同学有C种分法.第一组选1名组长有3种选法,第二组选1名组长有3种选法,第三组选1名组长有3种选法,第四组选1名组长有3种选法.根据分步乘法计数原理可知,满足条件的不同分配方案有CCCC34种,故选B.
课时精练
1.“中国梦”的英文翻译为“China Dream”,其中China又可以简写为CN,从“CN Dream”中取6个不同的字母排成一排,含有“ea”字母组合(顺序不变)的不同排列共有()
A.360种 B.480种C.600种D.720种
答案 C
解析 从其他5个字母中任取4个,然后与“ea”进行全排列,共有CA=600(种),故选C.
2.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为()
A.8B.24 C.48 D.120
答案C
解析 末位数字排法有A种,其他位置排法有A种,共有AA=48(种).
3.有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有()
A.240种 B.192种C.96种D.48种
答案 B
解析 当丙和乙在甲的左侧时,共有ACAA=96(种)排列方法,同理,当丙和乙在甲的右侧时也有96种排列方法,所以共有192种排列方法.
4.不等式A<6×A的解集为()
A.{2,8} B.{2,6} C.{7,12} D.{8}
答案 D
解析 <6×,
∴x2-19x+84<0,解得7<x<12.
又x≤8,x-2≥0,
∴7<x≤8,x∈N*,即x=8.
5.(2020·昆明质检)互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,现要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,共有摆放方法()
A.A种 B.A种
C.AA种 D.CCAA种
答案 D
解析 红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,即红色菊花两边各一盆白色菊花,一盆黄色菊花,共有CCAA种摆放方法.
6.(2021·山东临沂重点中学模拟)马路上有七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案共有()
A.60种 B.20种C.10种D.8种
答案 C
解析 根据题意,可分为两步:
第一步,先安排四盏不亮的路灯,有1种情况;
第二步,四盏不亮的路灯排好后,有5个空位,在5个空位中任意选3个,插入三盏亮的路灯,有C=10(种)情况.
故不同的开灯方案共有10×1=10(种).
7.有5列火车分别准备停在某车站并行的5条轨道上,若快车A不能停在第3道上,货车B不能停在第1道上,则5列火车不同的停靠方法数为()
A.56B.63 C.72 D.78
答案 D
解析 若没有限制,5列火车可以随便停,则有A种不同的停靠方法;快车A停在第3道上,则5列火车不同的停靠方法为A种;货车B停在第1道上,则5列火车不同的停靠方法为A种;快车A停在第3道上,且货车B停在第1道上,则5列火车不同的停靠方法为A种,故符合要求的5列火车不同的停靠方法数为A-2A+A=120-48+6=78.
8.(多选)(2021·苏州质检)现有4个小球和4个小盒子,下面的结论正确的是()
A.若4个不同的小球放入编号为1,2,3,4的盒子,则共有24种放法
B.若4个相同的小球放入编号为1,2,3,4的盒子,且恰有两个空盒的放法共有18种
C.若4个不同的小球放入编号为1,2,3,4的盒子,且恰有一个空盒的放法共有144种
D.若编号为1,2,3,4的小球放入编号为1,2,3,4的盒子,没有一个空盒但小球的编号和盒子的编号全不相同的放法共有9种
答案 BCD
解析 若4个不同的小球放入编号为1,2,3,4的盒子中,共有44=256(种)放法,故A错误;若4个相同的小球放入编号为1,2,3,4的盒子,且恰有两个空盒,则一个盒子放3个小球,另一个盒子放1个小球或两个盒子均放2个小球,共有C(A+1)=18(种)放法,故B正确;若4个不同的小球放入编号为1,2,3,4的盒子,且恰有一个空盒,则两个盒子中各放1个小球,另一个盒子中放2个小球,共有C·=144(种)放法,故C正确;若编号为1,2,3,4的小球放入编号为1,2,3,4的盒子,没有一个空盒但小球的编号和盒子的编号全不相同,若(2,1,4,3)代表编号为1,2,3,4的盒子放入的小球编号分别为2,1,4,3,列出所有符合要求的情况:(2,1,4,3),(4,1,2,3),(3,1,4,2),(2,4,1,3),(3,4,1,2),(4,3,1,2),(2,3,4,1),(3,4,2,1),(4,3,2,1)共9种放法,故D正确.故选BCD.
9.若把英语单词“good”的字母顺序写错,则可能出现的错误方法共有________种(用数字作答).
答案 11
解析 把g,o,o,d,4个字母排一列,可分两步进行,第一步:排g和d,共有A种排法;第二步:排两个o,共1种排法,所以总的排法种数为A=12.其中正确的有一种,所以错误的共有A-1=12-1=11(种).
10.某运输公司有7个车队,每个车队的车辆均多于4辆.现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有________种不同的抽调方法.
答案 84
解析 方法一 在每个车队抽调1辆车的基础上,还需抽调3辆车.可分为三类:一类是从某1个车队抽调3辆,有C种方法;一类是从2个车队中抽调,其中1个车队抽调1辆,另1个车队抽调2辆,有A种方法;一类是从3个车队中各抽调1辆,有C种方法.故共有C+A+C=84(种)抽调方法.
方法二 由于每个车队的车辆均多于4辆,只需将10个份额分成7份.可看作将10个小球排成一排,在相互之间的9个空当中插入6个隔板,即可将小球分成7份,故共有C=84(种)抽调方法.
11.(2020·梅州质检)某省高考实行3+3模式,即语文、数学、英语必选,物理、化学、政治、历史、生物、地理六选三,今年高一的小明与小芳进行选科,假若他们对六科没有偏好,则他们至少有两科相同的选法有________种.
答案 200
解析 根据题意,分2种情况讨论:
①两人选择的科目全部相同,有C=20(种)选法,
②两人选择的科目有且只有2科相同,有CCC=180(种)选法,
则两人至少有两科相同的选法有20+180=200(种).
12.(2020·全国Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有________种.
答案 36
解析 将4名同学分成人数为2,1,1的3组,有C=6(种)分法,再将3组同学分到3个小区,共有A=6(种)分法,由分步乘法计数原理可得不同的安排方法共有6×6=36(种).
13.某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则不同的安排方法有()
A.114B.90 C.108 D.60
答案 A
解析 5个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C·A=60(种),A,B住同一房间有C·A=18(种),故有60-18=42(种),当为(2,2,1)时,有·A=90(种),A,B住同一房间有C·A=18(种),故有90-18=72(种),根据分类加法计数原理可知,共有42+72=114(种).
14.(2021·湖北八市重点高中联考)从4名男生和3名女生中选出4名去参加一项活动,要求男生甲和乙不能同时参加,女生中的丙和丁至少有一名参加,则不同的选法种数为________.(用数字作答)
答案 23
解析 ①设甲参加,乙不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为C-C=9;
②设乙参加,甲不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为C-C=9;
③设甲、乙都不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为C=5.
综合①②③得,不同的选法种数为9+9+5=23.
15.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有()
A.120种 B.156种 C.188种D.240种
答案 A
解析 当“数”排在第一节时有A·A=48(种)排法;
当“数”排在第二节时有A·A·A=36(种)排法;
当“数”排在第三节时,当“射”和“御”两门课程排在第一、二节时有A·A=12(种)排法,当“射”和“御”两门课程排在后三节的时候有A·A·A=24(种)排法,
所以满足条件的共有48+36+12+24=120(种)排法,故选A.
16.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有________个.(用数字作答)
答案324
解析 当个位、十位和百位上的数字为三个偶数时,若选出的三个偶数含有0,则千位上把剩余数字中任意一个放上即可,方法数是CAC=72;若选出的三个偶数不含0,则千位上只能从剩余的非0数字中选一个放上,方法数是AC=18,故这种情况下符合要求的四位数共有72+18=90(个).
当个位、十位和百位上的数字为一个偶数、两个奇数时,若选出的偶数是0,则再选出两个奇数,千位上只要在剩余数字中选一个放上即可,方法数为CAC=72;若选出的偶数不是0,则再选出两个奇数后,千位上只能从剩余的非0数字中选一个放上,方法数是CCAC=162,故这种情况下符合要求的四位数共有72+162=234(个).
根据分类加法计数原理,可得符合要求的四位数共有90+234=324(个).
.
去年发了一年的资料就不再同步更新链接了,公号历史记录里都能看,QQ群里也都能下载,不想回翻历史记录也没关系,年年有新题,年年有新卷,接下来会同步更新新版内容的。下面的链接是历史推送里的经典资料,和一些值得一看的内容,以及同步更新的。
在gongzhong号对话页面菜单栏里找到这些内容:
下面的专题可以直接点击:
【真题专区】2011-2021高考真题240套(解析全)
【新高一】新高一数学课件PPT及解析(更新中)
【新高二】新高二数学课件PPT及解析(更新中)
【2022高三】2022高三一轮二轮(更新中)
【专题二区】数不清的数学专题(同步更新中)
【试卷三区】高考真题、笔者所在地最新模卷
相关资源