第二阶段报名继续 ? 2021年第十四届认证杯数学中国数学建模网络挑战赛参赛邀请函和报名指导!

发布于 2021-04-15 07:55 ,所属分类:知识学习综合资讯

点击上方蓝字 关注我吧



2021年第十四届“认证杯”数学中国数学建模网络挑战赛参赛邀请函和报名指导!


2021年第十四届“认证杯”数学中国数学建模网络挑战赛
——暨2021年全球数学建模能力认证赛



2021年第十四届数学中国数学建模网络挑战赛志愿者报名开始:

数学中国数学建模网络挑战赛自 2007年至今己举办了十三届,它是由内蒙古自治区数学学会、中国运筹学会计算系统生物学分会主办,由数学中国( www.madio.net)和第五维信息技术有限公司协办,由全球数学建模能力认证中心赞助支持的全国性数学建模活动。今年数学中国继续获得全球数学建模能力认证中心的授权,为参赛获奖的学生颁发数学建模能力认证,其目的是激励学生培养数学建模的能力,明确数学建模能力要求及范围,为数模社会效益化积累人才。
证书中盖有四个章(内蒙古自治区数学学会、中国运筹学会计算机系统生物学分会、内蒙古第五维信息技术有限公司、全球数学建模能力认证中心),最低省级,含国家级。

全球数学建模能力认证中心与数学中国的联合为广大数模爱好者的就业和深造提供了更多的机会,凡持证者,就可依托数学中国120万数学建模校友资源推广自己一一数学中国会员遍布各个领域,据不完全统计,其中有近万人己是大学教师、科研工作者、企业中高层管理人士、专业技术工程师等高层次人才。

2021年第十四届数学中国数学建模网络挑战赛志愿者招募活动正式开始了!
http://www.madio.net/forum.php?mod=viewthread&tid=403663&fromuid=1534206


联系QQ:
淡妆:1917509892
浅夏:3243710560
轻描:1834776468
乔叶:1470495151


参赛邀请函比赛简介:

数学中国(www.madio.net)从2003年11月建站以来一直致力于数学建模、算法、科学软件、理论数学的普及和推广工作,同时努力促进数学建模的社会化。目前已经发展成国内会员最多,资源最丰富,流量最大的数学建模、算法、科学软件、理论数学网络平台,2011年被中国站长俱乐部评为中国垂直社区网站最具特色奖。其始终秉承服务大众的理念,坚持资源共享、共同进步的原则,努力营造出严肃、认真、务实、合作的学术氛围,为中国数学的发展做出应有的贡献。

数学中国数学建模网络挑战赛,自2007年至今已举办了十三届,它是由内蒙古自治区数学学会、中国运筹学会计算系统生物学分会主办,由数学中国(www.madio.net)和第五维信息技术有限公司协办,由全球数学建模能力认证中心赞助支持的全国性数学建模活动。今年数学中国继续获得全球数学建模能力认证中心的授权,为参赛获奖的学生颁发数学建模能力认证,其目的是激励学生培养数学建模的能力,明确数学建模能力要求及范围,为数模社会效益化积累人才。

全球数学建模能力认证中心与数学中国的联合为广大数模爱好者的就业和深造提供了更多的机会,凡持证者,就可依托数学中国120万数学建模校友资源推广自己——数学中国会员遍布各个领域,据不完全统计,其中有近万人已是大学教师、科研工作者、企业中高层管理人士、专业技术工程师等高层次人才。

为了帮助持有认证证书的数模爱好者,数学中国从以下两个方面着手:

一方面,数学中国依托16年来积累的160万校友资源,与全国众多高校建立联系,并为证书反映的能力事实达成了一致意见,为持证者深造及增进学术交流提供了进一步的便利。

另一方面,将所有持有认证证书的数模爱好者加入数学中国人才库,数学中国依托校友资源,与300多家知名企业建立了合作关系,为数学建模能力认证者求职开辟了一条通道,提高了数模人才的社会认可度。具体的,数学中国将会联系相关企业,举办数学建模人才专场招聘会,为认证会员提供求职便利。

认证赛特点:

基于前九届挑战赛的办赛经验,认证中心总结出了一套能切实反映数学建模爱好者能力的比赛规则,其坚持原有的特色,注重创新,逐步形成了一些认证赛的特点:

1、总结近四年各大竞赛的出题思路。数据收集、模型优化及应用越来越成为数模能力考评的重点,我们将在出题上在这两个方面着重加强,同时在论文上,我们要求有中英文摘要及便于普通大众能看懂的模型阐述。中英文摘要可以考查学生的综合能力及科技论文的写作功底(英文摘要不必须写作,写作者可加分);而模型阐述是用于竞赛后期的网上讨论及推广,就如同就业面试如何介绍自己让猎头接受自己一样,要求把自己的论文如何介绍给对数学建模陌生的普通大众,这样才更好地让社会接受,便于推广。

2、题目将不再按高中组、大学组、研究生组来划分,而是参照美赛的形式,分为离散类型、连续类型、综合类型等各一道题目。评审时按组别分别评审,由于各个组别的学生能力不同,我们在评审时适用于不同的要求。考虑到高中组和专科组知识面有限,单独为他们出了一道题目。注明:由于数学建模能力是一种综合能力,所以测评不同知识面的数模爱好者的数模能力,需要差别化选择衡量方式。

3、每阶段有10个特等奖名额,其中每道题目各3个特等奖(比例有可能会根据提交论文的质量做适当调整),还有一个赛后讨论优秀创新奖,由于竞赛试题难度加大,三天的比赛时间会比较仓促。为了鼓励学生赛后的交流和改进,在每阶段结束后10天内,大家可以在比赛后认真学习他人论文,并在自己的模型上加以改进,向组委会提交一份自己满意的论文,这些论文将作为赛后讨论优秀创新奖单独评审。

4、第一阶段特等奖奖金每组300元人民币,第二阶段特等奖奖金每组为500元人民币。特等奖以下为一、二、三等奖和优秀奖,均有纸质证书和电子证书(凡是满足分数要求的参赛队,将获得全球数学建模能力认证中心的基础认证和高级认证,详情参照竞赛规则说明)。

5、数学中国励志奖学金为三组,每道题目各一组,总奖金额为每个参赛队3000元人民币。励志奖学金评审办法将参照两个阶段的论文、赛后答疑讨论情况以及网络面试(每题有三支队伍有资格参加网络答辩来竞争大奖)情况而定。

6、今年比赛特别增设了在线文档阅读功能,所有论文全部以在线文档公示,并提供下载(只限参赛者)。

7、本次比赛的部分获奖证书带有全球数学建模能力认证中心的认证标志和认证等级字样,具有与认证中心颁发的认证证书同等的效力,证书可以在认证中心官网查询(certificate.madio.net),本次比赛还提供电子版的英文证书,方便在申请出国时使用。

8、数学中国将从比赛获奖论文中挑选具有创新性的论文,经专家指导修改后发表到全球数学建模能力认证中心举办的国际期刊(英文期刊)上,一经发表学生和指导教师免费获得赠送本期期刊

9、本次比赛为更进一步展现大学生创新能力新增视频大赛,优秀视频制作团队颁发获奖证书及奖金,优秀视频并有机会成为数学中国十周年庆典视频片段。

认证赛进程分为两个阶段,从4月开始,每个月为一阶段。第二阶段是第一阶段题目的承接,题目难度会加大,实用性会加强。赛题素材主要来自社会生活中的实际问题及热点问题。每阶段比赛结束后,我们将所有论文全部在网上公示,这样既杜绝了竞赛中的抄袭行为,同时参赛者又能在第一时间研究其他参赛选手的思路,模型构成。同时每篇论文公布帖后将附模型阐述,便于网友交流,同时我们非常鼓励大家对所有公布论文进行学习及提问,而论文作者必须如实准确的回答网友的问题,网络讨论和答疑将是论文考评的方面之一。

我们衷心的希望您通过本次全球数学建模能力认证赛,真正的学习和掌握数学建模技能,提高个人的综合素质,将数学建模作为学习和工作的有利武器,运用它促进你的学术研究,提高您的工作效率。同时我们也希望贵校数学建模协会(培训班)能够通过本次认证赛,为选拔优秀学生参加全国大学生数学建模竞赛、全国研究生数学建模竞赛等一系列赛事提供参考依据。

我们立志打造规则公平、评审公正、论文公开的竞赛,为数模人才的取得社会认可提供必要凭证。再次感谢您长期以来对数学中国的大力支持!因为有您的支持,我们才能把数学中国建设的更好,为广大的数学建模的爱好者提供更优质的服务。


内蒙古自治区数学学会
中国运筹学会计算系统生物学分会
全球数学建模能力认证中心
中科院软件中心(Mathematica技术与服务部)
第五维信息技术有限公司
数学中国网
2021年3月



2021年第十四届“认证杯”数学中国数学建模网络挑战赛
——暨2021年全球数学建模能力认证赛
报 名 细 则


2021年数学中国数学建模网络挑战赛将于2021年4月举行。现将有关报名事项通知如下:

1.比赛两个阶段统一报名,参赛费为每队100元人民币(两个阶段总共)。如果需要组委会提供详细的论文评价,需要再支付100元人民币的论文点评费(即每个参赛队支付200元人民币)。
注:收费获得的点评是一篇不低于800字的详细评论(针对第一阶段论文),包括对论文模型与写作的具体评价与分析,并对参赛队伍提出可行的修改建议,助其发现第一阶段存在的问题,提高应对第二阶段比赛和国赛的能力。

2.竞赛时间:
第一阶段:(北京时间2021年4月8日下午20:00时——4月11日下午20:00时)

第二阶段:(北京时间2021年5月13日下午20:00时——5月16日下午20:00时)

3.报名对象:全国普通高校全日制在校专科生、本科生、研究生,高校毕业生(社会工作者)、数学建模爱好者均可参加。以队为单位参赛,每队1-3名学生,1名指导教师(无指导教师填写一个联系人信息)。
4.各院校(单位)参赛队数不限;
5.报名时间:即日起至5月16日17时;
6.报名方式:
学校组织报名:(不含跨校报名)由竞赛组委会发出邀请函,各学校组织学生参赛。其学校数学建模负责人组织、收集参赛队信息并填写学校集体报名表,于2020年4月16日零时之前发至竞赛报名指定邮箱:service@tzmcm.cn,(请在邮件上注明是否需要提供发票),我们届时会提供参赛队号。
个人参赛报名:(含跨校组队)由学生自己组织队伍,由队长注册登录我站竞赛主页(www.tzmcm.cn),填写队伍信息,等待注册成功后,获取参赛队号,此参赛队号在报名费用缴纳后生效。(在学校组织报名的同学无需在报名系统上注册)
7.缴费方式:学校组织报名,由学校统一汇款;个人组队由队长负责汇款。报名参加培训的队请注明“参加培训”字样。
1>对公账号支付:汇款帐号为:1556 1726 0430 户名:内蒙古第五维信息技术有限公司 开户行:中国银行呼和浩特市锡林南路支行 请汇款后将汇款详细时间(精确到分)及报名队号,汇款人姓名发邮件到 service@tzmcm.cn ,以便我们查实汇款。有条件者可以将汇款单扫描或者拍照,将图片发送到确认邮箱。注意对公账号汇款必须要注明汇款用途是参加数学建模网络挑战赛的报名费,并写清汇款人的姓名,否则无法查询。
2>支付宝支付:使用我要付款功能将报名费汇入账号75822904@qq.com,汇款原因处请注明“2021认证赛报名+参赛队号”字样;支付成功后请将“参赛队号+交易号”发送邮件service@tzmcm.cn予以说明。
8.其它事项请随时登陆报名网站,查看竞赛组委会的有关通知。
数学中国数学建模网络挑战赛网址:http://www.tzmcm.cn
全球数学建模能力认证证书查询网址:http://certificate.madio.net
数学中国网站:http://www.madio.net
联系电话:0471-4969085,13948315451
电子邮件:service@tzmcm.cn

联系QQ:淡妆:1917509892浅夏:3243710560轻描:1834776468
叶:1470495151

内蒙古自治区数学学会
中国运筹学会计算系统生物学分会.
全球数学建模能力认证中心;
中科院软件中心(Mathematica技术与服务部)
第五维信息技术有限公司
数学中国网
2021年3月

A基于粒子群优化算法的集成电路无网格布线
http://www.madio.net/forum.php?mod=viewthread&tid=473806&fromuid=1534206



A论文研究模拟电路对称线网布线算法
http://www.madio.net/forum.php?mod=viewthread&tid=473807&fromuid=1534206



A超大规模集成电路成功布线的策略
http://www.madio.net/forum.php?mod=viewthread&tid=473808&fromuid=1534206


A求解VLSI布线问题的离散粒子群优化算法
http://www.madio.net/forum.php?mod=viewthread&tid=473809&fromuid=1534206


A论文研究对拥有多线宽约束线网的布线策略
http://www.madio.net/forum.php?mod=viewthread&tid=473810&fromuid=1534206


SARS传播的数学模型
http://www.madio.net/forum.php?mod=viewthread&tid=473775&fromuid=1534206


BP神经网络在传染病时间序列预测中的应用及其MATLAB实现_刘天
http://www.madio.net/forum.php?mod=viewthread&tid=473776&fromuid=1534206


评价类算法Matlab编程实现
http://www.madio.net/forum.php?mod=viewthread&tid=473777&fromuid=1534206


WCDMA系统无线网络评估和优化
http://www.madio.net/forum.php?mod=viewthread&tid=473778&fromuid=1534206


TD-LTE网络规划与性能评估方法研究
http://www.madio.net/forum.php?mod=viewthread&tid=473779&fromuid=1534206



神经网络算法代码(可直接运行)
http://www.madio.net/forum.php?mod=viewthread&tid=473763&fromuid=1534206


层次分析法代码
http://www.madio.net/forum.php?mod=viewthread&tid=473764&fromuid=1534206



基于最小二乘支持向量机的传染病预测与研究
http://www.madio.net/forum.php?mod=viewthread&tid=473765&fromuid=1534206



Matlab传染病模型代码
http://www.madio.net/forum.php?mod=viewthread&tid=473766&fromuid=1534206


麻风风险预测模型的构建与效能评价
http://www.madio.net/forum.php?mod=viewthread&tid=473767&fromuid=1534206


30个matlab经典智能算法案例分析,包括遗传算法、粒子群算法、神经网络相关案例-30
http://www.madio.net/forum.php?mod=viewthread&tid=473789&fromuid=1534206



基于麦克风生源定位算法代码
http://www.madio.net/forum.php?mod=viewthread&tid=473790&fromuid=1534206



TDOA声源定位代码
http://www.madio.net/forum.php?mod=viewthread&tid=473791&fromuid=1534206


A题基于TDOA的声源定位系统研究_冯祎
http://www.madio.net/forum.php?mod=viewthread&tid=473792&fromuid=1534206


经典算法讲义
http://www.madio.net/forum.php?mod=viewthread&tid=473793&fromuid=1534206



基于GIS和层次分析法的青海甘德县地质灾害危险性评价

http://www.madio.net/forum.php?mod=viewthread&tid=473780&fromuid=1668961

基于蝙蝠算法优化反向传播神经网络模型的无线网络流量预测

http://www.madio.net/forum.php?mod=viewthread&tid=473781&fromuid=1668961

混沌鲸鱼优化算法及其在有限元模型修正中的应用

http://www.madio.net/forum.php?mod=viewthread&tid=473783&fromuid=1668961

基于深度学习的黑臭水体遥感信息提取研究

http://www.madio.net/forum.php?mod=viewthread&tid=473782&fromuid=1668961


2020国赛系列热点话题


《基于 Bellm an- Ford 算法的穿越沙漠策略研究》,本文主要针对在游戏规定条件下穿越沙漠的最优策略进行了相关研究。利用 Bellman-Ford 算法得出从起点到达矿山的最近距离,通过建立目标函数和约束条件,得到每种情况的最优策略。首先我们通过对题目所给路线与实际情况的分析,根据 Bellman-Ford 算法得出从起点到达矿山的最近距离,以及得到从矿山出发到达终点的最短路线
http://www.madio.net/forum.php?mod=viewthread&tid=473708&fromuid=1534206

《大直径顶管穿越沙漠深部护壁浆液体系研究与应用》,
本文提出粘土- CMC 聚合物浆液用作沙漠深部大直径顶管护壁,探讨浆液护壁及渗透机理,研究浆液性能随材料加量变化的关系,重点分析流变性、失水造壁性、润滑性的变化规律,得出浆液最优化配比。工http://www.madio.net/forum.php?mod=viewthread&tid=473709&fromuid=1534206

《输水明渠穿越沙漠防沙固沙措施设计
》,生物防护固沙设计重点是实地查清工程区内地形、地貌植被状况、防护带范围;查明风口、核定不同地段
的主风向和产生流沙的原因及危害程度,以此作为防护设计依据。http://www.madio.net/forum.php?mod=viewthread&tid=473710&fromuid=1534206


《“穿越沙漠”游戏最优策略分析》。“沙漠穿越”游戏要求解决玩家在沙漠掘金中能到达终点时获得最大利益的最佳方案问题,第一关中,只有一名玩家,在整个游戏时段内每天天气状况事先全部已知,运用 Dijkstra 算法求解最短路径的方式,首先
求出行走消耗天数最短的路径,其次在线路固定后并将玩家的策略汇总分为 6 种情况,使用 Lingo 进行线性规划分别求解,并给出玩家的最优策略和较为简便的计算公式,并通过编译程序以方便后续调用。
http://www.madio.net/forum.php?mod=viewthread&tid=473711&fromuid=1534206



《“穿越沙漠”游戏最短路径研究》,:本文主要针对“穿越沙漠”游戏在已知天气情况下的最优策略进行了相关研究,利用 Matlab 程序研究了单人玩家的在已知天气的情况下的最优前进路线。首先在已知天气的条件下,计算出起点、村庄、矿山以及终点两两之间的最短的天数,同时得到沿途食物和水的消耗量并考虑携带质量限制,若任意时间点不足以支撑行程消耗,则考虑去村庄补充物资,将地图数字化后,遍历去矿山和村庄的所有路径得到最优解。
http://www.madio.net/forum.php?mod=viewthread&tid=473712&fromuid=1534206



《一种便携式光学表面轮廓仪
》,研究了一种基于短相干光相移干涉法的便携式光学表面轮廓仪,分析了短相干光干涉显微镜相移干涉技术,实现了基于该项技术的光干涉显微系统。http://www.madio.net/forum.php?mod=viewthread&tid=473740&fromuid=1534206

《基于平面气浮导轨误差均化原理的轮廓仪研制》,
近些年来,精密和超精密加工技术不断发展,这对精密测量仪器的精度、稳定性等方面提出了更高的要求。基于气浮导轨的运动精度高、摩擦小、稳定性好等优点,其被广泛应用到精密测量仪器中,轮廓仪即是精密测量仪器中的典型代表。探究气体误差均化效应作用规律及设计新型X-Y气浮运动平台成为如何提高轮廓仪测量精度需要研究的两个关
键问题,具有重要的理论和实际意义。http://www.madio.net/forum.php?mod=viewthread&tid=473741&fromuid=1534206



《摆臂式轮廓仪测头空间位置检测技术研究》,本论文的主要工作是围绕摆臂式轮廓仪测头空间位置检测技术进行研究,提出了光谱共焦传感器测量测头偏心误差的方法以及点
源显微镜标定测头系统空间坐标位置关系和激光跟踪仪测量横臂转台轴心线的联合测量有效臂长的方法
http://www.madio.net/forum.php?mod=viewthread&tid=473742&fromuid=1534206


《大口径共焦轮廓仪设计及动态复合扫描方法研究》,本课题“大口径共焦轮廓仪设计及动态复合扫描方法研究”,利用共焦扫描原
理实现了对大口径共焦轮廓仪的设计及误差分析以及对大口径光学元件的二维轮廓测量和提取工作,重点研究了关于改变XZ相对运动模式实现大口径二维轮廓较
快速测量的方法,并基于此编写了LabVIEW上位机软件平台
http://www.madio.net/forum.php?mod=viewthread&tid=473743&fromuid=1534206


《接触式轮廓仪探针状态检查图形样块的研制》,针对接触式轮廓仪存在的探针沾污、探针缺陷、扫描位置不准的问题,采用半导体工艺技术在硅晶圆片上制备出探针状态检查样块。
http://www.madio.net/forum.php?mod=viewthread&tid=473744&fromuid=1534206













相关资源