初中数学暑假过渡:勾股定理与线段最值问题题型解读,抓紧掌握
发布于 2021-08-17 17:58 ,所属分类:中考数学学习资料大全
点蓝色字“江苏微教育”
【知识梳理】
一.平面图形中线段和差问题最值的“将军饮马问题”
1.基础题型:两条线段出现三个点:两个定点+一个动点
解题方法:先作图再计算解答
作图思路:任选两动点中的一个定点作对称点,动点所在的线段为对称轴,连接对称点与另一个定点,所连的线段即是要求的最小值,所连线段与对称轴的交点为动点所在的位置。
2.两条线段出现三个点:一个定点+两个动点
作图思路:作定点的对称点,一般两种处理方法:①能作两次对称的作两次对称,再连接两个对称点,连接线段即是最小值,与两条对称轴的交点分别是两动点位置;
②只能做一次对称的作一次对称,再作对称点到另一动点所在线段的垂线段,该垂线段即为最小值,垂线段与对称轴的交点即为一个动点所在位置,垂足为另一动点所在位置。
二.空间立体图形中路线最短问题:
1.解题思路:图形展开+勾股定理
2.长方体中的路线最短问题
①若是解答题,需分三种情况一一求解,最后比较确定最短距离;
②若是填选题,解题技巧是:直接用公式求解,
3.注意立体图形中的路线的起点、终点在展开图中的位置;
三.单独一条线段的最短问题
解题方法:作垂线(点到直线的各连线中,垂线段最短)
【典型例题】
▍素材来源:网络
▍综合整理:江苏微教育 ▍编辑:李老师 ▍审核:王老师
▍声明:版权归原作者,因条件限制无法联系到原作者,如侵权请联系我们删除或支付原作者。
相关资源