中考数学压轴题分析:中点辅助线2

发布于 2021-08-12 15:54 ,所属分类:中考数学学习资料大全

本文内容选自2021年重庆市中考数学压轴题(A卷),仍然以中点为关键条件,构造辅助线进行求值与证明.


【中考真题】

(2021•重庆)在

(2)如图2,连接

(3)如图3,在(2)的条件下,连接


【分析】

(1)见角平分线,则往两边作垂直,连接CE,易得△CEF为等腰三角形,进而得到BD=CE=CF=√2FG=√2AF.

(2)先猜测CD=2AG,再证明.

遇中点,则倍长,可以考虑用倍长中线,或者构造中位线进行证明结论.

如下图,可以倍长AG,然后得到全等,进而得到AB=EH,∠BAE+∠AEH=180°.

然后考虑证明一对三角形全等即可,即△ACD≌△EHA(SAS).

当然,这样连接也是可以的,方法类似

当然,中点还可以考虑构造中位线,如下图,延长BA至H,使得AH=AB即可

如果反过来延长构造中位线,也是可以的

如果取CD的中点M,再倍长也是可以的

(3)当∠BAC与∠AEC已知时,图形形状确定,易得∠AEC+∠ABC=180°,则四边形ABCE的对角互补,也就是说四点共圆,那么就可以得到∠AEB=∠ACB=30°,在等边△ADE内根据三线合一,可以得到边角关系,进而又得到△CDE为等腰直角三角形,设未知数即可得到所有的边角关系,结论易得.


【答案】

解:(1)连接

(2)

(3)如图3,连接




相关资源